0221
0221

La UNLP está cada vez más cerca de cumplir el sueño de construir un satélite propio

Está siendo desarrollado en la Facultad de Ingeniería y será el primero del ámbito universitario en entrar en órbita.
La UNLP está cada vez más cerca de cumplir el sueño de construir un satélite propio

La Facultad de Ingeniería de la UNLP avanza en el desarrollo de un pequeño instrumento de la categoría denominada CubeSat, que se transformará en el primer satélite universitario argentino de esta nueva generación en entrar en órbita alrededor de la Tierra. La primera misión consistirá en la demostración de técnicas con GNSS, usadas en estudios atmosféricos y del suelo. Si bien hoy la Comisión Nacional de Actividades Espaciales (CONAE), cuenta con seis satélites en órbita; el último de ellos el Saocom 1b, en el que la UNLP realizó un gran aporte, este proyecto será el primero de la generación de los CubeSat, realizado íntegramente en el ámbito de una Universidad.

El proyecto “Satélite Universitario” busca desarrollar 5 pequeños satélites de la categoría denominada “CubeSat”, con un máximo de 20 kg y “6 unidades”. Una unidad (1U) de CubeSat mide 10 cm x 10 cm x 10 cm, es decir que 6U equivale a 10 cm x 20 cm x 30 cm; en una configuración 1U x 2U x 3U.

Luego de una exitosa convocatoria, que finalizó en agosto de 2020, se recibieron 24 propuestas de 19 instituciones diferentes -tanto de la UNLP como externas-. De ellas, se determinaron las cinco misiones preseleccionadas, que en rigor integran propuestas de 10 grupos distintos. Estas misiones serán evaluadas para la continuidad del proyecto que, como se indicó, culminará con una serie de 5 CubeSat. El objetivo de esta iniciativa es la realización del diseño, construcción, ensayos e integración de satélites pequeños (SmallSats) en instalaciones de la universidad. A su vez el proyecto prevé la formación de recursos humanos en relación a las tecnologías espaciales. La UNLP, a través del Centro Tecnológico Aeroespacial (CTA), realizó el análisis de viabilidad del proyecto, utilizando las misiones propuestas por otros centros y grupos de investigación. Basados en este análisis, los ingenieros preseleccionaron las misiones viables, para las cuales se tiene un diseño conceptual que sirve como base para realizar estimaciones de los costos.

El primer satélite utilizará Tecnológica de GNSS-RO y GNSS-R. La radio-ocultación GNSS (GNSS-RO) es una de las técnicas más utilizadas en estudios atmosféricos, tanto en la región neutra como en la ionósfera. Por otro lado, existe una técnica más reciente denominada reflectometría GNSS (GNSS-R), que se puede emplear para estudiar la superficie terrestre. “Es de especial interés para nuestros científicos medir la humedad del suelo y la cobertura de vegetación con esta técnica. La validez del uso de GNSS-R para obtener la cobertura de vegetación aún no se ha demostrado, y es uno de los objetivos secundarios de esta misión”, destacó la coordinadora del programa, Sonia Botta, egresada de la carrera de Ingeniería Aeronáutica de la UNLP y magíster en sistemas satelitales.

A pesar de que estos satélites son pequeños, pueden cumplir muchas misiones: en observación terrestre "se puede hacer análisis de suelos, hidrología, movimiento de tierras, urbanismo, monitoreo meteorológico", agregó Botta. La elaboración del nanosatélite demandará una inversión de unos 50 mil dólares. Según detallaron desde la UNLP, 20 mil serán financiados con fondos propios del CTA, mientras que los 30 mil restantes serán aportados con un crédito del Ministerio de Desarrollo Productivo de la Nación.

El objetivo primario de esta misión es demostrar el funcionamiento de todos los componentes de la instrumentación. Por lo tanto, es una misión con un enfoque mayormente de ingeniería y desarrollo tecnológico. Sin embargo, como objetivos secundarios, la información obtenida mediante GNSS-RO será procesada para estudiar la ionósfera, En tanto que los resultados provenientes de GNSS-R serán utilizados para analizar la validez de esta técnica para la medición de cobertura de vegetación y para medir la humedad del suelo.

Las cargas útiles adicionales, que aún están en proceso de evaluación para definir su compatibilidad con la carga útil principal, serán: un star tracker desarrollado por el laboratorio CIOp (UNLP/CIC/CONICET), un retroreflector para laser ranging aportado por el AGGO (CONICET), y un instrumento para la detección de tormentas geomagnéticas, propuesto por un grupo de estudiantes de las carreras de Ingeniería Aeronáutica y en Computación. "Uno de los principales objetivos del proyecto Satélite Universitario es demostrar que la ciencia está al alcance de todos. Estas cosas se pueden hacer. Tenemos capacidad técnica y humana, que es lo principal; necesitamos gestionar y organizar para llevarlo adelante apostando siempre al desarrollo de la soberanía espacial”, enfatizó Marcos Actis, vicepresidente Institucional de la UNLP y director del CTA.

El satélite tendrá una estructura de aluminio con un sistema de navegación en su interior que será construido en los talleres de la Facultad. Las baterías de litio, los paneles solares y las mantas doradas serán desarrolladas en el laboratorio del Centro Tecnológico Aeroespacial. Con respecto al lanzamiento, Actis detalló que “confiamos en que, por los vínculos que estamos generando con China y con la NASA, en Estados Unidos, podamos incorporarlo en alguna misión que ellos tienen previstas". Y no descartó que, si se construye el Arsat 3, cuyo desarrollo se retomó, "se pueda pedir para que vaya como carga auxiliar en su lanzamiento”.

Una parte significativa de los centros de investigación de la UNLP involucrados en este proyecto tuvieron experiencias previas en el campo de investigación o desarrollo de tecnologías espaciales. La UID GEMA, que forma parte del Centro Tecnológico Aeroespacial, cuenta con más de 20 años de experiencia en el diseño, desarrollo y ensayos de componentes satelitales. Participó en las misiones SAC-B, SAC-A, SAC-D, y SAOCOM-1A y 1B. El grupo SENyT, de la Facultad de Ingeniería, desarrolló el sistema de navegación para los vehículos experimentales VEx, del proyecto Tronador II. Por otra parte, el Laboratorio MAGGIA y el grupo GESA de la Facultad de Cs. Astronómicas y Geofísicas, y el CIMA de la Facultad de Ciencias Exactas, cuentan con una amplia trayectoria en el área de desarrollo de aplicaciones y procesamiento de datos satelitales.

La UNLP está cada vez más cerca de cumplir el sueño de construir un satélite propio
ORGULLO PLATENSE

La UNLP está cada vez más cerca de cumplir el sueño de construir un satélite propio

Está siendo desarrollado en la Facultad de Ingeniería y será el primero del ámbito universitario en entrar en órbita.

05 de mayo de 2021

La Facultad de Ingeniería de la UNLP avanza en el desarrollo de un pequeño instrumento de la categoría denominada CubeSat, que se transformará en el primer satélite universitario argentino de esta nueva generación en entrar en órbita alrededor de la Tierra. La primera misión consistirá en la demostración de técnicas con GNSS, usadas en estudios atmosféricos y del suelo. Si bien hoy la Comisión Nacional de Actividades Espaciales (CONAE), cuenta con seis satélites en órbita; el último de ellos el Saocom 1b, en el que la UNLP realizó un gran aporte, este proyecto será el primero de la generación de los CubeSat, realizado íntegramente en el ámbito de una Universidad.

El proyecto “Satélite Universitario” busca desarrollar 5 pequeños satélites de la categoría denominada “CubeSat”, con un máximo de 20 kg y “6 unidades”. Una unidad (1U) de CubeSat mide 10 cm x 10 cm x 10 cm, es decir que 6U equivale a 10 cm x 20 cm x 30 cm; en una configuración 1U x 2U x 3U.

Luego de una exitosa convocatoria, que finalizó en agosto de 2020, se recibieron 24 propuestas de 19 instituciones diferentes -tanto de la UNLP como externas-. De ellas, se determinaron las cinco misiones preseleccionadas, que en rigor integran propuestas de 10 grupos distintos. Estas misiones serán evaluadas para la continuidad del proyecto que, como se indicó, culminará con una serie de 5 CubeSat. El objetivo de esta iniciativa es la realización del diseño, construcción, ensayos e integración de satélites pequeños (SmallSats) en instalaciones de la universidad. A su vez el proyecto prevé la formación de recursos humanos en relación a las tecnologías espaciales. La UNLP, a través del Centro Tecnológico Aeroespacial (CTA), realizó el análisis de viabilidad del proyecto, utilizando las misiones propuestas por otros centros y grupos de investigación. Basados en este análisis, los ingenieros preseleccionaron las misiones viables, para las cuales se tiene un diseño conceptual que sirve como base para realizar estimaciones de los costos.

El primer satélite utilizará Tecnológica de GNSS-RO y GNSS-R. La radio-ocultación GNSS (GNSS-RO) es una de las técnicas más utilizadas en estudios atmosféricos, tanto en la región neutra como en la ionósfera. Por otro lado, existe una técnica más reciente denominada reflectometría GNSS (GNSS-R), que se puede emplear para estudiar la superficie terrestre. “Es de especial interés para nuestros científicos medir la humedad del suelo y la cobertura de vegetación con esta técnica. La validez del uso de GNSS-R para obtener la cobertura de vegetación aún no se ha demostrado, y es uno de los objetivos secundarios de esta misión”, destacó la coordinadora del programa, Sonia Botta, egresada de la carrera de Ingeniería Aeronáutica de la UNLP y magíster en sistemas satelitales.

A pesar de que estos satélites son pequeños, pueden cumplir muchas misiones: en observación terrestre "se puede hacer análisis de suelos, hidrología, movimiento de tierras, urbanismo, monitoreo meteorológico", agregó Botta. La elaboración del nanosatélite demandará una inversión de unos 50 mil dólares. Según detallaron desde la UNLP, 20 mil serán financiados con fondos propios del CTA, mientras que los 30 mil restantes serán aportados con un crédito del Ministerio de Desarrollo Productivo de la Nación.

El objetivo primario de esta misión es demostrar el funcionamiento de todos los componentes de la instrumentación. Por lo tanto, es una misión con un enfoque mayormente de ingeniería y desarrollo tecnológico. Sin embargo, como objetivos secundarios, la información obtenida mediante GNSS-RO será procesada para estudiar la ionósfera, En tanto que los resultados provenientes de GNSS-R serán utilizados para analizar la validez de esta técnica para la medición de cobertura de vegetación y para medir la humedad del suelo.

Las cargas útiles adicionales, que aún están en proceso de evaluación para definir su compatibilidad con la carga útil principal, serán: un star tracker desarrollado por el laboratorio CIOp (UNLP/CIC/CONICET), un retroreflector para laser ranging aportado por el AGGO (CONICET), y un instrumento para la detección de tormentas geomagnéticas, propuesto por un grupo de estudiantes de las carreras de Ingeniería Aeronáutica y en Computación. "Uno de los principales objetivos del proyecto Satélite Universitario es demostrar que la ciencia está al alcance de todos. Estas cosas se pueden hacer. Tenemos capacidad técnica y humana, que es lo principal; necesitamos gestionar y organizar para llevarlo adelante apostando siempre al desarrollo de la soberanía espacial”, enfatizó Marcos Actis, vicepresidente Institucional de la UNLP y director del CTA.

El satélite tendrá una estructura de aluminio con un sistema de navegación en su interior que será construido en los talleres de la Facultad. Las baterías de litio, los paneles solares y las mantas doradas serán desarrolladas en el laboratorio del Centro Tecnológico Aeroespacial. Con respecto al lanzamiento, Actis detalló que “confiamos en que, por los vínculos que estamos generando con China y con la NASA, en Estados Unidos, podamos incorporarlo en alguna misión que ellos tienen previstas". Y no descartó que, si se construye el Arsat 3, cuyo desarrollo se retomó, "se pueda pedir para que vaya como carga auxiliar en su lanzamiento”.

Una parte significativa de los centros de investigación de la UNLP involucrados en este proyecto tuvieron experiencias previas en el campo de investigación o desarrollo de tecnologías espaciales. La UID GEMA, que forma parte del Centro Tecnológico Aeroespacial, cuenta con más de 20 años de experiencia en el diseño, desarrollo y ensayos de componentes satelitales. Participó en las misiones SAC-B, SAC-A, SAC-D, y SAOCOM-1A y 1B. El grupo SENyT, de la Facultad de Ingeniería, desarrolló el sistema de navegación para los vehículos experimentales VEx, del proyecto Tronador II. Por otra parte, el Laboratorio MAGGIA y el grupo GESA de la Facultad de Cs. Astronómicas y Geofísicas, y el CIMA de la Facultad de Ciencias Exactas, cuentan con una amplia trayectoria en el área de desarrollo de aplicaciones y procesamiento de datos satelitales.

COMENTARIOS

Está siendo desarrollado en la Facultad de Ingeniería y será el primero del ámbito universitario en entrar en órbita.